UOJ Logo 蜗牛编程训练题库

JZOJ

#842. [CSP-J 2021] 分糖果(官方数据)

Statistics
时间限制:1s    空间限制:256MB    输入文件:candy.in    输出文件:candy.out
当前24小时内您还剩30次提交本题的机会

题目背景

红太阳幼儿园的小朋友们开始分糖果啦!

题目描述

红太阳幼儿园有 $n$ 个小朋友,你是其中之一。保证 $n \ge 2$。

有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。

由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 $R$ 块糖回去。

但是拿的太少不够分的,所以你至少要拿 $L$ 块糖回去。保证 $n \le L \le R$。

也就是说,如果你拿了 $k$ 块糖,那么你需要保证 $L \le k \le R$。

如果你拿了 $k$ 块糖,你将把这 $k$ 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 $n$ 块糖果,幼儿园的所有 $n$ 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 $n$ 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励

作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 $n, L, R$,并输出出你最多能获得多少作为你搬糖果的奖励的糖果数量。

输入输出格式

输入格式

输入一行,包含三个正整数 $n, L, R$,分别表示小朋友的个数、糖果数量的下界和上界。

输出格式

输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。

输入输出样例

输入样例 #1

7 16 23

输出样例 #1

6

输入样例 #2

10 14 18

输出样例 #2

8

输入样例 #3

见附件中的 candy/candy3.in。

输出样例 #3

见附件中的 candy/candy3.ans。

说明

【样例解释 #1】

拿 $k = 20$ 块糖放入篮子里。

篮子里现在糖果数 $20 \ge n = 7$,因此所有小朋友获得一块糖;

篮子里现在糖果数变成 $13 \ge n = 7$,因此所有小朋友获得一块糖;

篮子里现在糖果数变成 $6 < n = 7$,因此这 $6$ 块糖是作为你搬糖果的奖励

容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 $6$ 块(不然,篮子里的糖果数量最后仍然不少于 $n$,需要继续每个小朋友拿一块),因此答案是 $6$。

【样例解释 #2】

容易发现,当你拿的糖数量 $k$ 满足 $14 = L \le k \le R = 18$ 时,所有小朋友获得一块糖后,剩下的 $k - 10$ 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 $k = 18$ 块是最优解,答案是 $8$。

【数据范围】

测试点 $n \le$ $R \le$ $R - L \le$
$1$ $2$ $5$ $5$
$2$ $5$ $10$ $10$
$3$ ${10}^3$ ${10}^3$ ${10}^3$
$4$ ${10}^5$ ${10}^5$ ${10}^5$
$5$ ${10}^3$ ${10}^9$ $0$
$6$ ${10}^3$ ${10}^9$ ${10}^3$
$7$ ${10}^5$ ${10}^9$ ${10}^5$
$8$ ${10}^9$ ${10}^9$ ${10}^9$
$9$ ${10}^9$ ${10}^9$ ${10}^9$
$10$ ${10}^9$ ${10}^9$ ${10}^9$

对于所有数据,保证 $2 \le n \le L \le R \le {10}^9$。

Solutions

标题 发表者 发表日期
None